Subject : Engineering Mathematics II Code : 59933 F.E. SEM. – I and II (New Syllabus : Introduced from July 2013)

Day and Date Friday, 06-06-2014

Time: 10 a.m. to 1.00 p.m.

Total Marks : 100

Instructions : 1) All the questions are compulsory

- 2) Figures to the right indicate full marks
- 3) Non-programmable calculator is allowed
- 4) Assume suitable data if necessary

SECTION - I

- Q.1. Attempt any THREE from the following
 - a) Solve $\frac{dy}{dx} = \frac{1 + y^2 + 3x^2y}{1 2xy x^3}$
 - b) Solve $(x + \tan y) dy = \sin 2y dx$
 - c) Solve $y \, dx x \, dy + 3x^2 y^2 \, e^{x^3} dx = 0$
 - d) Solve $3y^2 \frac{dy}{dx} + 2xy^3 = 4xe^{-x^2}$

Q.2. Attempt any THREE from the following

a) Find the orthogonal trajectories to the family of coaxial circles

 $x^{2} + y^{2} + 2\lambda x + c = 2$ where λ being a parameter

b) Bacteria in a culture multiply at a rate proportional to the number present. If initially there are 100 in number of bacteria and incresed to 332 in one hour.

What would be the number of bacteria after $1\frac{1}{2}$ hours?

- c) The charge q on plate of condenser C charged through a resistance R by a steady voltage V, if q = 0 initially, show that the charge q at any time t is given by $q = CV(1 e^{-t/RC})$
- d) A body originally at 80°C cools down to 60°C in 20 minutes, the

temperature of the air being 40° C. What will be the temperature of the body after 40 minutes from the original.

1

- Q.3. Attempt any FOUR from the following
- a) Solve $\frac{dy}{dx} = 2x y$ with $x_0 = 0$, $y_0 = 0$ by Taylor's series method and obtain solution y as a power series of x upto x^4 . Also compare your solution with exact solution.
 - b) Solve using Euler's method to approximate y for x = 0.1 given that
 - $\frac{dy}{dx} = y + x + xy$, y(0) = 1 in four steps.

(15)

W-1462

(15)

(20)

- c) Solve using Runge-Kutta fourth order method $\frac{dy}{dx} = 3x + y^2$ given that y = 1.2 when x = 1, find y when x = 1.1
- d) Use Euler's modified method to find y(0.1) if $\frac{dy}{dx} = x + 3y$ with y(0) = 1 taking h = 0.05
- e) Solve the following simultaneous differential equations by Runge-Kutta method fourth order $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y$ given that y = 0, z = 1 when x = 0taking h = 0.1

SECTION-II

Q.4. Attempt any THREE from the following (15)a) Evaluate $\int_{0}^{1} \sqrt{x \log(1/x)} dx$ b) Evaluate $\int_{-\infty}^{1} \frac{x - 2x^2 + x^3}{(1 + x)^5} dx$ c) Prove that $\int_{0}^{1} \frac{x^{a}-1}{\log x} dx = \log(1+a), a \ge 0$ d) Prove that $\int_{-\infty}^{\infty} erf(at) dt = x erf(ax) + \frac{1}{a\sqrt{\pi}} \left(e^{-a^2x^2} - 1 \right)$ Q.5. Attempt any THREE from the following (15)a) Trace the curve $x^3 + x y^2 - 4y^2 = 0$ b) Trace the curve $r^2 = a^2 \sec 2\theta$ c) Find the length of curve $\theta = \frac{1}{2} \left(r + \frac{1}{r} \right)$ from r = 1 to r = 2d) Obtain the arclength of parabola $y^2 = 4ax$ from vertex to one extremity of latus rectum Q.6. Attempt any FOUR from the following (20)a) Evaluate $\iint y \, dx \, dy$ over the area bounded by x = 0, $y = x^2$ and x + y = 2 in the first quadrant. b) Change the order of $\int_{0}^{\pi/2} \int_{x}^{\pi/2} \frac{\cos y \, dy \, dx}{y}$ and hence evaluate c) Evaluate $\int_{0}^{a} \int_{x}^{a} \frac{x \, dx \, dy}{\sqrt{x^2 + y^2}}$ by changing to polar co-ordinates. d) Obtain the area of cardioide $r = a(1 + \cos\theta)$ by double integration. e). Calculate the mass of lamina bounded by the curves $y^2 = x$ and $x^2 = y$ if the density of lamina at any point varies as the square of its distance from origin.

2